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A model for the gneration of noise by
bubbles formed in breaking waves

R.M. Heitmeyer and R.D. Hollett

Executive Summeryt The characteristics of the ambient noise field in
the sea are important to the performance prediction, detection capabilities
and optimum use of sonar systemg. imstgula h4Sthe aim of ambient
noise studies at-. A0 TMC to improve knowledge and prediction of
the ambient noise field in area of importance. These studies involve the
development and validation of models for the generation and distribution of
the noise.

This report presents a model for the generation of high-frequency, wind-
related noise. The model is based on the' assumption that the noise is
generated by air bubbles entrained in whitecaps (breaking waves). The
characteristics of the noise predicted by the model compare favourably with
published observations, regarding directionality, level and spectral form.

The development of the model involves a statistical approach in terms of
the indivlvual bubbles rather than a continuum approach in terms of an
sir/water mixture.

This work concludes the theoretical modelling of high-frequency, wind-
related noilse••e-•m ted d-at- *-G_..eeThe results contribute to progrem in
identifying the sources of wind-reited noise in the sea. A later report will
present the results of experimental observations of the noise from whitecaps
at sea.
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A model for the generation of noise by
btibbles formed in breaking waves

R.M, Heitineyer and RD. Hollett

Abstract: A general model is presented that describes the high-frequency
noise cross-spectrum generated by the vibrations of bubbles formed in break-
ing waves. The bubble vibrations are described -9 linear with the excitation
occurring at the moment the bubble is formed. Two simplified models are
obtained from the general model under idealized propagation assumptions.
The simplified models can be viewed as extensions of the Kuperman and
Ingenito and the Cron and Sherman models in that the sou:ce mechanism is
included. To obtain specific results we postulate that the bubble vibrations
are excited either by a rapid pressure change at formation or by an initial
rate of change of the bubble volume. The noise intensity spectra for these
two excitation mechanisms are evaluated over the frequency range 0.66-10
kHz using one of the simplified models with the parameters estimated for a
particular wind speed. Although different, both spectra have levels compa-
rable to the Wenz spectrum for the same wind speed.

Keywords: breaking waves o bubble vibrations o wind-related noise
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1. Introduction

In his classical paper, Wenz [1] speculated that two likely sources of high-frequency,
wind-related noise are spray and bubbles. Spray is generated by the action of the
wind on the crests of waves and by wave breaking. Bubbles are generated in large
numbers by the entrainment of air in breaking waves. Air entrainment following
the impact of spray also generates bubbles. A number of authors have developed
models for the high-frequency noise generated by spray impact or bubble vibra-
tions. The spray impact model of Wilson [2] is an empirical model based on Franz's
measurements [3] of the sound generated by the impact of sprays in a water tank.
To rigorously quantify the relative contribution of spray impact noise, further work
must be done on the amount of spray generated and the characteristics of that spray
(droplet size, impact speed and angle). Kerman [4] has developed a model for the
noise generated by non-linear vibrations of the bubbles in breaking waves. The as-
sumption is made that the turbulence in breaking waves is sufficiently strong to force
non-linear vibrations of the entrained bubbles, Other models that are also based on
non-linear motion of the bubble wall are those of Furduev [5] and Shang and Ander-
son [6]. Whether or not non-linear motion of the bubble wall really occurs remains
to be determined. Crowther [7] has developed a semi-empirical model in which the
noise is generated by linear vibrations of the bubbles excited at formation. In his
model the source level is determined empirically from the noise spectra of bubbles
formed followi-6 bpray impact in a tank.

In this report we present a model for the noise generated by the linear vibrations of
the bubbles formed in breaking waves where the vibrations are assunied to be excited
at the moment the bubble is formed. General expressions are presented for the cross-
spectra of the noise produced by an individual breaking wave and the noise produced
by the aggregate of the breaking waves. The spectra for a single hydrophone are
obtained as special cases of the cross-spectra. We then present two simplified models
for the cross-spectra obtained under idealized propagation assumptions. Both the
general and the simplified models are applicable to an arbitrary bubble excitation
mechanism. To obtain specific results we postulate that the bubble vibrations are
excited either by a rapid change in the pressure on the bubble wall at the moment of
formation or by an initial rate of change of the bubble volume. The noise intensity
spectra for these two excitation mechanisms are evaluated over the frequency range
0.66-10 kHz using one of the simplified models and ihe results are compared to a
Wenz spectrum.

-- 1--
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2. The general model

The sound produced by the linear vibrations of a bubble is well understood. The

pressure waveform is determined from the second time derivative of the volume

vibrations which in turn are determined as the solution of a second-order linear

differential Equation with constant coefficients [8,9]. Accordingly, the spectrum of

the pressure observed at some reference distance xO can be written as the product

Pb(w) :H(w)F(), (1)

where H(w) is the pressure transfer spectrum and F(w) is the pressure excitation

spectrum. The pressure transfer spectrum is equal to the bubble pressure spectrumn

when the bubble is excited by an impulse excitation of unit strength. This spectrum

is given by
H(,.() (2_ )

- W2 - W02)±+i6WOW' (2

where R is the equilibrium radius of the bubble, wo = 27rfo, is the natural angular
frequency of the monopole bubble vibrations, and 6 is the damping constant. For

bubble radii of interest here, w0 and 6 are well approximated [9,10] by

wo = 27r(3.3ms 1 )/R, (3a)
-4 1/2 ( b

S= 0.014+ 1.8x 10 - 0  . (3b)

The pressure transfer spectrum for the radii of interest is dominated by a large peak

that occurs for w ýt wo, with a value approximately given by R/& 0o. rhe pressure
excitation spectrum describes both the applied pressure on the bubble wall and the

departure from the equilibrium state at the time at which the bubble is caused to

vibrate. This spectrum is given by

F(w) = (p/4irR) (iWAV(O) + V(O)) - AP(w), (4)

where AV(0) = V(0) - Vo, is the initial volume displacement, Vo =0 iR 3 ,is the

equilibrium volume of the bubble, V/(0) is the initial volume rate, and AP(w) is

the spectrum of the pressure excess acting on the bubble wall. The initial volume

displacement is equivalent to an excitation by a doublet (the time derivative of an

impulse), and the initial volume rate is equivalent to an impulse excitation. Thus, the
first term has a significant spectral component at the natural bubble frequency and

hence gives rise to high-frequency sound. This term is non-zero whenever a bubble is

formed in a non-equilibrium state. The pressure-excess term has significant energy

at the natral bubble frequency if, at the moment of formation, the excess pressure

waveform changes significantly over a time period of the order of 27r/wo. Whether

-2
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the bubble is excited by ftrmation in a non-equilibrium state or by a rapid change
in excess pressure at formation, the resulting excess energy is, in part, emitted in
the form of a damped pressure wave. The spectrum of the pressure wave observed
at any point is determined as the product of the spectrum 47zoPb(w) and the
appropriate Green function. In what follows we omit the reference distance r0 with
the understanding that unit distance is implied.

A physical picture for the formation of the bubbles that produce the sound is pro-
vided by the description of a spilling breaker by Longuet-Higgins and Turner [11].
According to these authors, the whitecap formed on a spilling breaker can be re-
garded as a turbulent air/water mixture that is both accelerated down the forward
slope of the wave by gravity and retarded by the entrainment of upslope momentum
from the flow in the wave below. This air/water mixture is lighter than the water in
the wave below owing to the entrainment of air bubbles and remains distinct from
the rest of the wave. Bubbles are generated at the front of the whitecap by the
over-running of a layer of air as the front advances and they are generated along
the surface of the whitecap by the trapping of air under the turbulent eddies which
break out of the surface of the whitecap. We consider only those bubbles that are
generated at the whitecap front - not those that are generated along the surface of
the whitecap itself.

The model for the cross spectrum of the noise generated by a breaking wave is
based on two fundamental assumptions. Firstly, neither the sound produced by an
individual bubble nor the propagation of that sound to the hydrophol, s is influenced
by the presence of the other bubbles in the breaking wave. Stated in other terms,
the bubbles in the breaking wave do, not vibrate collectively to produce the sound
and the propagation of the sound from an individual bubble is not absorbed or
scattered by the other bubbles in the breaking wave. Secondly, the number of bubbles
generated in the breaking wave and the positions and times at which those bubbles
are generated are described by a Poisson process. Furthermore the equilibrium
radii of those bubbles are statistically independent with a probability density that
depends only on the bubble occurrence position.

The setting for the model is illustrated in Fig. 1. The breaking wave occurs at posi-
,,ion r and time r and the sound produced by that wave is observed on hydrophones
located at positions z, and z2. The bubbles are generated in a region located at
the front of the whitecap that advances with the whitecap front down the leading
face of the breaking wave. TLe total volume swept out by the bubble generation
region during the lifetime of the breaking wave is the source region V. The tothd
number of bubbles generated in the source region is Nb and the positions and times
at which those bubbles are generated are {(yk, Vk), k = 1,..., Nb}, where Lk is mea-
sured relative to the breeking-wave occurrence time r. The damped pressure wave
enmitted by each bubble is of sufficiently short duration that the effect of buoyancy
and transport of the bubble in the turbulence is neglected. By the first assumption
the spectrum of the pressure observed on each hydrophone from all of the bubbles

3--3
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I Z'
BUBBLE GENERATION
REGION

Fig. 1. The physical setting foi the general model.

generated in the breaking wave is the superposition of the received pressure spectra
from each of the bubbles. Thus using the linear theory to describe the received
pressure spectrum from each bubble, the spectrum of the total pressure observed on
each hydrophone can be written in the form

Nb

Pw(w;r, zj) V Pb(W;yk, Rk)G(w,r + Ykzj (5)

where Pb(w; y, T) is the pressure spectrum for a bubble generated at position y
with equilibrium radius R and G(w, r + y, zj)/41r is the Green function describing
the propagation from the bubble position r + y to the hydrophone positions zi and
Z2. For fixed values of y, v and R, the Green function and the pressure transfer spec-
trum H(w; y, R) are assumed to be deterministic; the pressure excitation spectrum
F(w; y, 1?) is, in general, stochastic with cross-spectrum

Cp(w; y, y', R, R') = Eb[F*(w; y, R)F(w; y', R')] (6a)

and energy spectrum
SF(wo; y, R) = Eb iF(wo; y, R)}, (6b)

where Eb[.] is the expected value operator for fixed values of the bubble occurrences
and the Ldubble radii.

The Poisson process describes the generation of bubbles by the ensemble of breaking
waves that occur at the position r. This process is specified by a bubble generation

rate u*(y, v) that represents the mean number of bubbles that are generated per
unit volume per unit time in the bubble generation region during the breaking-wave

4
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lifetime. The mean number generated per unit volume at the point y in the source
region V is given by the bubble generation rate

f1(y) f 4 y, V) (7a)

and the mean number of bubbles is

Mb !V ji(y)d'y, (7b)

where d3 y is the volume element. Finally the equilibrium radii of the bubbles
generated at the position y are described by the bubble-radius probability density
p(R I y). For reference purposes, the properties of Poisson processes relevant to this
report are summarized in Appendix A.

The breaking-wave cross-spectrum is the mean cioss-spectrum of the pressure ob-
served at z, and z2 for all breaking waves that occur at the position r. In Appendix C
it is shown that this cross-spectrum can be written as the sum of two cross-spectra.
The first is the cross-spectrum that results if the received pressure contributions
from the individual bubbles were statistically uncorrelated with zero mean. The
second cross-spectrum includes the effects of both the non-zero mean and the cor-
relation in the received pressure contributions that results from the correlation in
the bubble excitation spectra (see (6a)) In Appendix D we derive an upper bound
on the energy contribution of the second spectrum relative to that of the fist. By
evaluating this jppc-: bound we show that the first spectrum makes the dominant
contribution at the high frequencies of interest in this report. On the basis of this
result we henceforth neglect the contribution of the second cross-spectrum. With
this approximation, the breaking-wave cross-spectrum car be written in the form

Cw,(w; r, zl, z'2) = MbS.,,b.(wJ)Cp(wg; r, zl, z2), (8a)

where Sm.b.(W) is the mean bubble spectrum and C:p(w; r, zi, z 2 ) is the propagation
cross-spectrum. The mean bubble spectrum is given by

Smn.b.(W) MbJ P(y)Sr.b.(w; y) d3y, (8b)

where

S,.b.(w;,y) = j Sb(w;y,R)p(R I y)ddR (8c)

is the radius-averaged bubble spectrumn and

Sb(W; y, R) = IH(w; y, R)12SF(w; y, R) (8d)

is the single-bubble spectrum. The propagation cross-spectrum is given by

CP (to- rz,'z2) J S=.b.(W; y)G*(w,r + y, zl)G(w,r + y,z 2 ) d3 y, (8e)
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where

.b.(w; y) M- Y)Sr.b.(W; Y)

Iv p(Y)S,.b.(W; y) d3 y

is the normalized radius-averaged spectrum. The complete equation for the breaking-
wave cross-spectrum car be found in Appendix C.

The cross-spectrum of (8a) can be interpreted as follows. The propagation cross-
spectrum Cp(w; r, Zl, Z2) is the cross-spectrum of the pressure from a volume dis-
tribution of uncorrelated, zero-mnean monopole sources where the energy emitted
by each source is described by the normalized radius-averaged spectrum Sr.b.(w; y).
By virtue of (8f) the energy spectrum level for the volume distribution is normal-
ized to unity. The single-bubble spectrum Sb(W; y, R) describes the energy emitted
by a bubble that is generated at position y with an equilibrium radius R. The
radius-averaged spectrum S.b.(w; y) is the average of the single-bubble spectrum
with respect to the radius probability density p(R j y); i.e. it describes the average
energy emitted by a single bubble located at the position y as the radius of that
bubble ranges through ali possible values. The quantity M-1 p(y) is the probability
density on the bubble occurrence positions (see Appendix A). The mean bubble
spectrumn Sm.b.(w) is the average of Sr.b.(W; y) with respect to this probability den-
sity. Thus the mean bubble spectrum describes the average energy emitted by a
single bubble located anywhere in the source region V as both the radius and the
position of that bubble range through all possible values. Finally since Mb is the
mean number of bubbles generated in the source region, the spectrum MbSm.b.(w)
describes the average energy emitted by all of the bubbles in a breaking wave. With
these interpretations (8a) indicates that the breaking-wave cross-spectrum is deter.
mined as the product of a spectrum that describes the average energy of the sound
emitted by a breaking wave and a cross-spectrum that describes the propagation of
that sound from the position of the breaking wave to the hydrophone positions.

The noise cross-spectrum is defined as the fourier transform of the cross-correlation
function of the pressure due to the aggregate of the breaking waves on the ocean
surface. The expression for the noise cross-spectrum is obtained under two assump-
tions: firstly, that the pressure waveforms received at the hydrophones from dif-
ferent breaking waves are statistically independent and identically distributed; and
secondly, that the occurrence positions and occurrence times of the breaking waves
{(rk, rik)} are described by a second Poisson process that is independent of the bub-
ble generation process. This process is determined by a breaking-wave occurrence
rate A(r) that represents the mean number of breaking-wave occurrences per unit
area of the ocean surface per unit time at the position r. From these assumptions
it is shown in Appendih. B that the noise cross-spectrum is given by

C(L-;zt'z2) Z- fA. \(r)C,,(u);r, zj, Z2) d 2r,(9

-6 )
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where d2r is the surface area element and A, is the total area of the ocean sur-
face over which the breaking waves occur. This equation indicates that the noise
cross-spectrum is obtained as the integral over the ocean surface of the mean cross-
spectrum of the pressure from a single breaking wave weighted by the breaking-wave
occurrence rate. Note that this result is the same as would be obtained if the field
of individual breaking waves were viewed as a continuum on the ocean surface. It is
emphasized, however, that (9) is a consequence of the Poisson assumption and does
not result from a continuum approximation. Such ap approximation would not be
plausible in the light of the sparsity with which breaking waves occur on the ocean
surface.

For the high frequencies of interest in this report the noise cross-spectrum is well
approximated by using (8) to substitute for the breaking-wave cross-spectrum in
(9). The resulting noise cross-spectrum can be written in the formn

(W; z1 , Z2)= MhSb(W)CLp(w; Z1 , z2 ), (l0a)

where

Ci.p.(W; z1 ,Z 2 ) = /. A(r)Cp(w; r, zi, z2) d 2r (10b)

is referred to here as the integrated propagation cross-spectrum. To interpret these
equations we note that the noise cross-spectrum can be expressed as the integral over
the surface region of the product of the spectrum A(r)MbS,,.b.(W) and the propaga-
tion cross-spectrum C,'p(w.; r, zi, z2 ). As noted previously the spectrmn MbS..b.(w)
is the mean energy spectrum for the breaking waves that occur at the position r,
and A(r) is the rate per unit surface area per unit time at which these breaking
waves occur. Jt follows that the product A(r)MbS.,.b.(W) is the mean intensity
source spectrum per unit area for the succession of breaking waves that occur at r.
Consequently, the product of this source spectrum with the propagation spectrum
Cp(w; r, z1 , z 2 ) is the noise cross-spectrum per unit area for the breaking waves that
occur at r. Thus (10a) and (10b) "tate that the noise cross-spectrum for all breaking
waves is obtained as the integral of the noise cross-spectrum for the breaking waves
that occur at each point on the surface region.

-7--
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3. The simplified models

In the noise model the propagation of the sound to the hydrophone positions is
described by the two cross-spectra Cp(w; r, zj, z2) and Ci.p.(W; z1 , Z2). The propaga-
tion cross-spectrimi Cp(w; r, z1 , z2 ) describes the sound propagation from all points
in the source region of a breaking wave located at the position r; the integrated
cross-spectrum Ci.p.(w; z, zz) describes the sound propagation from all breakir.g-
wave positions. A. considerable simplification in the noise model results if the acous-
tic propagation is appoximated as that determined for a source region lying below a
fiat, pressure-release surface. With this approximation the integrated cross-spectrmn
can be obtained from an extension of the noise-propagation model of Kuperman and
Ingenito [12], provided that the source region has a horizontal cross-section that is
independent of the vertical coordinate, and that the medium is horizontally stratified
(i.e. the sound speed and bottom characteristics are independent of the horizontal
coordinates). If, in addition, the mediumu can be viewed as homogeneous and semi-
infinite (constant sound speed and no bottom) the integrated cruss-spectrum can be
obtained from an extension of the Cron and Sherman model [131. In this section we
describe the simplified models that result from these approximations.

The setting foz the simplified models is illustrated in Fig. 2. We take the surface
region A. to be of infinite extent and assume that the breaking-wave occurrence
rate .(r) is independent of r. The source rt-ion extends down from the surface to a
depth D with a horizontal cross-section A' that is independent of depth. Within the
source region, the bubble position vector y is represented as the sum of a horizontal
vector y' and a vertical vector y" with magnitude y" E [0, D]. The two hydrophones
are located at positions z and s,. In the ideal medium case (homogeneous, semi-
infinite) the hydrophones are assumed to be located far enough beiow the ocean
surface that the incident acoustic field can be vicwed as planewave. For this case,
the vertical vector z, of magnitude z, points to the midpoint of the line connecting
the hydrophones. The positions of the hydrophones relative to the midpoint are
determined by the hydrophone difference vector z' = Z2 -- z1 , that has magnitude
z' and lies at an angle y relative to the horizontal plane. The planewave field is
described by the wavenumber vector k that has magnitude k = w/c, and points in
the direction of z - r at an angle 0 relative to the vertical.

In the stratified medium case, the noise cross-spectrum is obtained from the gen-
eral molel using the inegrated cross-spectrun that resulis from the simplifying
assumptions. To obtain the integrated cross-spectrum, we use the propagation
cross-spectrum of (8e) in (10b), interchange the order of the surface and the vol-
ume integrations, and express the volume integral a3 an integral over the horizontal
cross-sectional area followed by an integral over the depth interval. (This last step

8-
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ifý

0

zI

k2

Fig. 2. Setting for the simplified models.

is permitted by the assumption on the form of the source region.) The result is

Ci p.(o;zi,z 2) =A j JSb(W;y + Y

X L. G*(w,r+y'+y",zi)G(w,r+y'+y",z2 )d 2 rd3y. (11)

The final expression for the integrated cross-spectrrum is obtained by making the
change of variable r' -r+y' in the surfa,:e integral of 11) and using the assumption
that A. bas infinite extent to eliminate t!he dependence on the horizontal vector y'.
The noise cross-spectruni is then obtained by substituting in (10a). The result can
be written in the form

C(W; Zl, Z2) =• \MbS..b.(W•)Ci'(WI0 Zl, Z2), (12a.)

where

DCI!(W; ZI, Z2) --fy.b(;•")C'(w; y", zj, z2) dy'• (12b)

10 4

and Srb (w;Y") = A, r b.(w; Y' + y") d 2y" (12c)

C'(W; Y",,z 2 ) = JAG G(w r +Y, zi)G(wr + Y"01,2) d~r. (12d)

-9-
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Note that Cl7(w; Zl, z2) is the integrated cross-spectrum that results for a breaking-
wave occurrence rate of unity.

The simplified model of Eqs. (12) determines the noise cross-spectrum as the product
of the source spectrum AMbSn.b,(W) and the integrated cross-spectrum CQ(w; zi, z 2).
According to (12b), the integrated cross-spectrum is obtained as a depth average
of the cross-spectrum C'(W; y", Z1, z 2 ) weighted by the depth-dependent spectrum
S. b.(W; y"). The cross-spectrum C'(w; yV, z1 , z2 ) is equivalent to that obtained in
the Kuperman and Ingenito model for a sheet of spatially-uncorrelated monopole
sources located at a depth y" below the surface. (To see this, make the change of
variables p = r' - r" in Eq. (7) of [12], and take the sources to be uncorrelated by
using Eq. (17) of [12], to obtain (12d).) Thus the above simplified model provides
both an expression for the source spectrum of the Kuperman and Ingenito model
and a rule for combining the 'source-sheet' cross-spectra determined by their model
to produce the total noise cross-spectrum. Examples showing the response of an
array determined from the 'source-sheet' cross-spectrum of Kuperman and Ingenito
for different acoustic environments can be found in Hanison [14].

In the ideal medium case the resulting simplified model provides expressions for both
the breaking-wave cross-spectrum and the noise cross-spectrum. These expressions
are obtained from the general model with the propagation cross-spectrum and the
integrated cross-spectrum determined from the Green function for the ideal medium.
Using the method of images the Green function can be obtained by replacing the
point source in the send-infinite medium by a dipole source in an infinite medium
where the dipole axis is perpendicular to the surface and the length of the dipole is
twice the bubble depth. It follows immediately that the function G(w, r + y, zj) is
given by

G(w. r ± y,zj) = 2isin(ky")e -ik-si (13/
iz- r , (13)

where Q is a frequency-dependent absorption coefficient and k! is the Vertical com-
ponent of k. The breaking-wave cross-spectrum is obtained by first using (13) in
(8e) to determine the propagation cross-spectram and then substituting in (8a). The
result can be expressed in the form

Cw(w; r,zi, z2) MbSm.b.(W)R(w, O)T(w, Iz - rI)e-k', (14a)

where I D
R(w, 0) S=.b.(•w; ;Y) (2 sin (k cos(O)y"))" dy" (14b)

is a frequency-dependent radiation pattern and

T(u, Is --- r)- - r (14c)

-- 10-
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is the transmission loss from r to z. This cross-spectrum is the same as that obtained
for a point source that has an energy source spectrum Mb Sm.b.(w) and a radiation
pattern R(w, 0) and that radiates sound into an infinite homogeneous medium.

The noise cross-spectrum is obtained with the integrated cross-spectrum determined
from the propagation cross-spectrum for the ideal medium. The integral in (10b)
is first expressed in polar coordinates to evaluate the azimuth integral and then
converted to an integral with respect to 6 by making the change of variables IrI/z =

tan(O). The result is then combined with (10a) to obtain

C(w; zj, z 2 ) = )Mb -9m.b.(LO)("'(w; :,z',, Z% 15a)

where the integrated cross-spectrum C((w; z, z', -) is given by

C [( .' , z,; Z' , z ) 2w f R ( .W , O)e - r 3*(O''• ) +'" kz ei (-Y)c @(8))

x Jo (kz' cos(7) sin(O)) tan(O) dM. (15b)

This noise cross-spectrum is the same as that obtained by replacing the ocean sur-
face with a sheet of uncorrelated point sources that radiates sound into an infinite
homogeneous medium where each source has an intensity source spectrum per unit
area AMbSm.b.(W) and a radiation pattern R(w, 0).

The simplified model of Eqs. (15) is related to the Cron and Sherman model through
the real part of the normalized integrated cross-spectrum p(w; z, z, I ) = Re (C.(w;
z,z, y)/C.(w; z,0,7y). Using Eq. (15b) to calculate p(w;z,z?,y) and comparing
the result with Eq. (14) of 113], it is seen that for a lossless medium (a = 0),
the two cross-spectra are identical if the radiation pattern R(w, 9) is replaced by
cos32(#). Thaus this simplified model provides not only a source spectrum for the
noise-propagation model of Cron and Sherman but also an expression for the radi-
ation pattern in their model.

Further insight can be obtained by comparing the angular dependence of the radi-
ation pattern R(w, 6) at extreme frequencies with the assumed angular dependence
in the radiation pattern of Cron and Sherman, To this end it is noted that the radi-
ation pattern R(w, 9) is obtained as the depth integral of the radiation pattern for
a vertical dipole weighted by the depth-dependent spectrum ,,.b.(w; y"). For low
frequencies the dipole radiation pattern is approximately that of an infinitesimal
dipole for all depths in the source region. Thus the result of the depth integration
is an infinitesimal dipole which has the form

R(w, 0) = (2(w/c) cos(G)D'(w)) 2
, (16a)

where

D'(w) ;y")(y") dy" (16b)

- 1
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It follows that for low frequencies the cross-spectrum p(W; z, z', -y) is approximately
that of the Cron and Sherman model for m = 1. For high frequencies the dipole
radiation pattern for a bubble at a particular depth has multiple lobes that occur
in directions which vary with the depth of the bubble. Thus the dipole radiation
pattern for a bubble at one depth has lobes that occur in the directions of the
nulls in the radiation pattern for a bubble at another depth. The effect of the depth
integration in (14b) is to produce a radiation pattern that is approximately constant
over all angles for which the multiple lobes occur. This can be seen in more formal
terms by rewriting (14b) in the form

R(w, 0) = 2 (- I (w;y")cos(2(w/c)cos(O)y") d ." (17)

For high frequencies the second term in (17) will be negligible provided that
Sr.b.(W; y") varies slowly with depth in comparison to cos (2(w/c) cos(6)y"). In the
case where Sy.b.(w; f ) is independent of y", the second term will be negligible for fre-
quencies and angles satisfying f > (c/2D)/ cos(O') and 0 < 0'. For these frequencies
and angles, R(w, 0) .t 2. Thus, for sufficiently high frequencies, the radiation pattern
is approximately that of a :requency-independent monopole (except for angles near
fjr), and hence the cross-spectrum p(w; z, z', ,) for a = 0 is approximately that of the
Cron and Sherman model for m = 0. For later reference we note that the integrated
spectrum C!(w; z,0,y) for a = 0 has the frequency dependence (2(w/c)D'(W )) 2 at
low frequencies and is essentially independent of frequency at high frequencies.

It is important to emphasize that the simplified models are obtained with the source
region located below a flat surface. The bubbles that produce the sound, however,
are assumed to be located well within the breaking wave itself, and over the fre-
quency band considered, the wavelength of the radiated sound from each bubble is
comparable to or smaller than the dimensions of the breaking wave. Consequently
the cross-spectra obtained from the simplified models might differ significantly from
those obtained if the shape of the breaking wave were taken into account.

- 12-
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4. The excitation postulates

In Sect. 2 it was noted that for linear bubble vibrations excited at formation, high-
frequency sound is emitted only if the bubbles are formed in a non-equilibrium state
or if the bubbles are subjected to a rapid change in pressure. As stated in Sect. 2,
we consider only those bubbles formed as the whitecap front advances, over-running
a layer of air. In this section, we postulate two different mechanisms by which the
bubble vibrations are excited.

The first postukqte is essentially a pressure excitation of the bubbles. We assume
that at formation, ti~e bubbles are subjected to a rapid pressure increase arising from
the weight of the water that over-runs the bubbles. The over-running is aisumed to
be sufficiently rapid that the pressure increase approximates to a step increase. The
pressure excitation spectrum is then given by

F(w; y, R) - -ipgd(y)/w, (18a)

and the excitation energy spectrum is

SF(w; y, R) = (pgd(y)/w)2 , (18b)

where d(y) is the depth of the bubble formed at the position y.

The second postulate is essentially a volume-rate excitation. At the moment a bubble
is formed by the closure of an air cavity we assume that the inward velocity of the
water surrounding the cavity imparts an initial volume rate Vý(O) to the bubble.
To determine the initial volume rate we use the fact that for the small bubble
vibrations for which the linear theory is valid V(O) : 47rR 2 R(O), where R(O) is the
initial radial velocity. By continuity, R(O) is equal to the inward velocity of the
water at the moment of closure, U. Thus by identifying R(O) with U we obtain

F(W; y, R) -pRU. (19a)

To obtain the excitation energy spectrum we assume that the inward velocity at
closure, U, is a random variable with a mean that is independent of the bubble
radius and that for any two bubbles, the inward velocities at closure are mutually
uncorrelated. These assumptions are equivalent to assuming that at the moment of
closure of a cavity, the velocity of the surrounding water is independent of the size
of the cavity and that the bubbles are formed with differences in position and time
that are large compared with the correlation dist&rice and the correlation time of
the turbulent motion in the front. With these assumptions the excitation energy
spectrum is given by

SA~W; y, R) =- (pRU')2, (19b)

where U' is the rms inward velocity at closure.

- 13-
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5. Parameter estimation and model results

In this section we present examples of the mean bubble spectrum Sm.b.(w) and the
noise intensity spectrum S(w; z) = C(w; z, z), for the two excitation postulates de-
scribed in the previous section. The examples were obtained using the simplified
model for the ideal medium with the additional assumption that the bubble gen-
eration rate ;A(y), the pressure transfer spectrum of a bubble H(w; y, R), and the
bubble-radius density p(R I y) are independent of the bubble position y throughout
the source region. The simplified model equations for the two excitation postulates
are derived with this additional assumption in Appendix E.

The model parameters used for the examples were estimated for a wind speed of
10 m s-1. The estimate of the product AMb and the form of the bubble-radius
density p(R) were based on a model for the generation and distribution of bubbles
at the ocean surface proposed by Crowther [151. In this model the bubbles generated
at the ocean surface are distributed by the action of turbulent motions that carry
them downwards and by buoyancy that forces them to rise. UMider steady-state
conditions the number of bubbles per unit volume of radius R that are distributed
immediately below the surface is given by

n(R) =(R)/v(R), (20)

where s(R) is the number of bubbles per unit area per unit time of radius R that are
generated at the surface and v(R) is the rise velocity. From a dimensional argument,
Crowther concludes that the surface generation rate s(R) is proportional to (W/R)3,
where W is the wind speed. Using this relationship in (20) with an expression for
v(R), and fitting the resulting bubble-radius distribution n(R) to backscatter data,
he concludes that

s(R) z 2.3 x l0-'WW3 R- (21)

Using this model an expression for AMb was obtained as follows. Since > specifies
the mean number of breaking waves that occur per unit area of the surface per unit
time and Mb specifies the mean number of bubbles generated in a breaking wave,
AMb specifies the mean number of bubbles generated per unit area of the surface per
unit time. Assuming that the only significant source of surface-generated bubbles is
breaking waves, AMb is given by the integral of s(R) with respect to R, i.e.

Rm.x

AMb ; 2.3 x 10-I 0 W3  R- 3 d.R, (22)
SRnlin

where Rmin and Rm.x are the minimumn and maximum radii of the bubbles generated
in the breaking waves. According to (22) the mean number of bubbles generated in
a breaking wave is proportional to the integral of R- 3 with respect to R and hence

- 14-
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the fraction of these bubbles with radii in dR is proportional to R 3 . It follows that
the bubble-radius density is also proportional to R-3, i.e.

p(R) ; R- 3 /I R--3 dR. (23)
JJ~i

The values of R,...,n and R,,., determine the band of natural bubble frequencies in the
mean bubble spectrum. The value of Rmnx was inferred from laboratory measure-
mients of the distribution of bubble radii in simulated breaking waves by Monahan
and Zietlow f161. Over the range of radii from 0.6 mnn to 5 nun, their distribution
shows an R- 3 dependence - the same as Crowther's distribution n(R) for a rise
velocity that is independent of bubble radius (see (20) and (21)). Some bubbles
with radii between 5 and 9 nun were also observed in the laboratory measurements.
However, the possibility cannot be excluded that such large bubbles resulted from
the coalescence of smaller bubbles formed at some earlier stage. In view of this pos-
sibility we restricted Rm,,x to 5 mm, corresponding to a natural bubble frequency
of 0.66 kHz. For Rmin we used a value of 0.3 mm corresponding to 10 kHz. (We
note that the values of Rmin and R,,,. also affect the mean bubble spectrum level
owing to the normalization in (23). The noise intensity spectrum level, however, is
not affected by these values since the integral in (22) and its inverse in (23) cancel
out.)

An estimate of ^ was obtained from A u w/Am Ta,, where w is the fraction of
whitecap coverage, and An and Tn1 are the mean area and mean lifetime of an
individual whitecap event. The fraction of whitecap coverage was taken from the
observations of Ross and Cardone 117). In their definition of whitecap coverage,
these authors include 'large new foam patches'. This was taken into account in
estimating the mean area and lifetime of Fan individual event. Using the observation
w = 0.01 for a wind speed of 10 in s- 1 , with estimates Am = 10 m2 and Tm = 10 a,
we obtained A = 10-4 breaking waves per square metre of ocean surface per second.

Using the above values of Rmjn, Rmx and A in (22) yielded Mb = 1.27 x 10' bubble
generations. (We note that for a rectangular bubble generation region 0.2 m (deep) x
0.2 m x 2 in, moving at constant rate during a breaking- wave lifetime of 3 s, 1.27 x 104

bubble generations implies a bubble generation rate p = 5.3 x 10, bubbles per cubic
metre per second. Thus in a cubic decimetre of this moving region 53 bubbles are
generated during each second of the breaking-wave lifetime.)

Finally for both excitation postulates, we used a source region depth D = 0.2 m,
and for the volume-rate postulate, we used an rms inward velocity U' = 7 cm s-'.

The mean bubble spectra for the two excitation postulates are illustrated in Fig.
3. Both spectra have their highest energy levels in the frequency band 0.66-10
kHz. This is the band of natural bubble frequencies corresponding to the range of

- 15-
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Fig. 3. Mean bubble spectra for 0.2 m source region depth: dashed curve
- pressure-jump excitation; dotted curve - volume-rate excitation for an

rms inward velocity of 7 cm s-1.

bubble radii used. Within this bandd the spectra have comparable levels at the lower
frequencies (large bubbles) and both decrease in level as the frequency increases
(the bubble radius decreases). The -:pectra differ from one another in their high-
frequency slopes. For the pressure-jump excitation the slope is about -6 riB/octave
over the full band, whereas for the volume-rate excitation the slope varies from
about -6 dB/octave at the lower frequencies tu about -2 riB/octave et the higher
frequencies.

To explain the slopes of the mean bubble spectra we first compare the corresponding
single-bubble spectra Sb,(w; y, R). The shapes of the single-bubble spectra can be
seen through the plots of Fig. 4. These plots show the energy transfer spectruin
I H(w; R)12 and the excitation energy spectra Sp(w; y, R) for a 3.3 nun radius bubble
(fe = I kHz), at the rms source depth; the parameter values are the same as those
for the mean bubble spectra of Fig. 3. The shapes of the single-bubble spectra
are seen by adding the corresponding excitation spectrum to the transfer spectrum.
For both excitation postulates this results in a single-bubble spectrum with a sharp
peak at the natural bubble frequency frs. For the pressure-jump excitation the single-

-16-
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Fig. 4. Single-bubble spectrum components for R = 3.3
mm: solid curve - energy transfer spectrum at I m; dashed
line - excitation energy spectrum for pressure-jump excita-
tion; dotted line - excitation energy spectrum for volume-rate
excitation.

bubble spectrum approaches zero for frequencies on either side of fo due to the -6
dB/octave slope in the excitation spectrum. In contrast the single-bubble spectrum
for the volume-rate excitation only approaches zero for frequencies less than Jo since
the excitation spectrum is flat - for frequencies greater than Jo the single-bubble
spectrum approaches a level that is proportional to R 4 . (We note that the peak
source level of the single-bubble spectrum for both excitation postulates is roughly
90 dB re 1 pPa at 1 m. This level results from an amplitude of vibration of less than
1% of the equilibrium radius which is well within the linear range.)

Having noted the difference in the shapes of the single-bubble spectra we point
out that for both excitation postulates the peak value of the single-bubble spec-
trum is proportional to R4 6-2 . This can be seen as follows, recalling that the
transfer spectrum IH(w; R)12 has a peak of (R/6) 2 . For the volume-rate excitation,
SF(w; y, R) cx R2 so that the peak value of the single-bubble spectrum is propor-
tional to R4 612 . For the pressure-jump excitation, Sp,(w;y,R) cK w-2 so that the
peak value, which is well approximated by IH(wo; R)I'Sp(Wo; y, R), is proportional
to (R/6)3wG 2 or to R4 6- 2 . For natural bubble frequencies less than 10 kHz (R > 0.3
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mm) 6 is only weakly dependent on R (see Eqs. (3)), and thus the peak value for
both excitations is approxirniately proportional to R 4

Having compared the single-bubble spectra the slopes of the meawt bubble spectra are
explained as follows. For the pressure-jump excitation the single-bubble spectrum
goes to zero for frequencies on either side of the sharp peak at wo so that for a fixed
frequency w the major contribution to the integral of (8c) occurs when wo is approx-
imately equal to w. This occurs for bubble radii R : 21r(3.3 m s- )/w. For these
radii the integrand is approximately equal to the peak value of the single-bubble
spectrumi weighted by the bubble-radius density. The peak value is proportional to
R 4 and the radius density is proportional to R- 3 . Consequently the integrand is
proportional to R so that the integral is proportional to R2 or equivalently to W-2,

in accordance with the -6 dB/octave slope seen in the mean bubble spectrum of
Fig. 3.

For the volume-rate excitation the preceding argument does not apply, even though
the peak of the single-bubble spectrum has the same radius dependence as that
for the pressure-jump excitation. This is because the single-bubble spectrum does
not go to zero for frequencies greater than w0 , rather it approaches a level that is
proportional to R4. As a result, when w is large contributions to the integral of (8c)
from the single-bubble spectra for small wo (large R) are not small in comparison
to those for wo ; w and hence cannot be neglected. In fact, it is the integration
of these contributions that results in the changing slope at high frequencies in the
mean bubble spectrum of Fig. 3.

The examples of the noise intensity spectra for the two excitation postulates are
shown in Fig. 5. Also shown is the Wenz spectrum for the 10 fi s' wind speed
taken from [1]. Both model spectra show a near-constant level at the lower fre-
quencies of the band 0.66-10 kHz, followed by a decrease in level at the higher
frequencies. At the lower frequencies the near-constant level in both spectra results
from the cancellation of the w- 2 dependence in the mean bubble spectrum by the
w2 dependence in the integrated propagation spectrum (see Sect. 3). At the higher
frequencies the slopes of the two model spectra are approximately those of the cor-
responding mean bubble spectra. This results from the fact that at high frequencies
the integrated propagation spectrum is essentially independent of frequency. (For

frequencies greater than about 7 kHz, the integrated propagation spectrum decreases
with frequency because of the absorption loss - computed for a hydrophone depth
of 1000 m - and hence the model noise intensity spectra fall off more rapidly than
the corresponding mean bubble spectra.)

The noise intensity spectrum for the pressure-jump excitation shows better agree-
ment with the Wenz spectrum than that for the volume-rate excitation at the high
frequencies. At these frequencies the slope of the pressure-jump spectrum is only
slightly more negative than the -5 dB/octave slope of the Wenz spectrum, whereas

18-
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Fig. 5. Noise intensity spectra for 10 in s- 1 wind speed: ilolid c..rve
- Wenz spectrum; dashed curve - pressure-jump excitatio% and dotted
curve - volume-rate excitation for A = 10-4 breaking waves m- 2 s- ,

p(R) oc R-3, R between 0.3 and 5 inmm, MI -ý 1.27 x 10 4 bubbles.

the slope of the volume-rate spectrum is at least 2 dB more positive than that of

the Wenz spectrum.
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6. Summary and conclusion

A general model has been developed for the generation of high-frequency noise by
linear vibrations of the bubbles formed in breaking waves. This model essentially
comprises two cross-spectra: the breaking-wave cross-spectrum that describes the
noise produced by individual breaking waves, and the noise cross-spectrum that
describes the noise produced by the aggregate of the breaking waves. The breaking-
wave cross-spectrum is obtained by assuming that the noise from the aggregate
of bubbles is the superposition of the noise from individual bubbles and that the
bubbles are generated according to a Poisson process. This cross-spectrum can be
written as the sum of two cross-spectra, one of which makes the dominant energy
contribution at high frequencies. The noise cross-spectrum is obtained by assum-
ing that the pressure waveforms from different breaking waves are statistically in-
dependent and identically distributed, and that the breaking waves are generated
according to a second Poisson process.

Two simplified models have been obtained from the general model by assuming that
the source region lies below a flat surface and that the propagation is determined
as that for either a stratified medium or an ideal medium. As such, these models
can be viewed as extensions of the Kuperman and Ingpnito model and the Cron and
Sherman model for the case of noise generated by bubbles in breaking waves. Both
simplified models characterize the noise source in terms of a spectrum at each point
on the ocean surface. For the stratified medium the noise cross-spectrum is obtained
from a depth integral of the 'source-sheet' cross-spectrum of the Kuperman and In-
genito model. For the ideal medium the noise cross-spectrum is obtained using a
frequency-dependent radiation pattern in the Cron and Sherman model.

Examples of the noise intensity spectra fox a 10 m s-1 wind speed have been pre-
sented for two postulated excitation mechanisms - a pressure-jump excitation and
a volume-rate excitation. These spectra were computed using the simplified model
for the ideal medium with values of the parameters mostly inferred from published
measurements. Although different the two spectra both show levels comparable to
the Wenz spectrum for the same wind speed. Of the two spectra, the high-frequency
slope of the pressure-jump spectrum is in better agreement with the Wenz spectrmn.
It is noted, however, that the idealized propagation assumption used in the simpli-
fied model neglects the shape of the breaking wave. If this shape were accounted for
there would be a different frequency dependence in the radiation pattern which could
significantly change the shape of the model spectra at the higher frequencies. It is
also noted that there are uncertainties in the overall levels of the model spectra due
to uncertainties in the parawlAers. Nevertheless, the rough agreement between the
model spectra and the Wenz spectrum supports the hypothesis that linear vibrations
of bubbles generated in breaking waves are a primary source of wind-related noise.
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Appendix A

The breaking-wave and bubble occurrences

In this appendix we obtain the multi-dimensional, non-homogeneous Poisson pro-
cesses for the breaking-wave occurrences and the bubble occurrences. To this end
we first summarize the relevant properties of a general Poisson process.

Points are said to be distributed in a space X according to a non-homogeneous
Poisson process if for any subset A contained in X the number of points in A is a
Pois.son random variable N with the probability that n points lit in A given by

SPr'N : n] e-MM"In!, (A.1)

where

M' A(x) d3x (A.2)

is the mean number of points in A and A(x) is the rate function (mean number
of points per unit voltane) of the process. Clearly, to specify a non-homogeneous
Poisson process in the space X it suffices to specify its rate function A(x). In the
special case where the rate function is independent of x, the Poisson process is said
to be homogeneous. In this case, M is given by

M = Avolume(A). (A.3)

Given that there are n points in A, the Poisson process describes those points in
terms of a joint probability density given by

P( .. r,.) = ll P(Xk), (A.4a)
k=l

where N~)M x E A4b
p(x) = 0, otherwise. (A.4b)

It follows from Eqs. (A.4) that the points are independent, identically-distributed
random variables with the common probability density of (A.4b).

The Poisson process for the breaking-wave occurrences is obtained by identifying
the point xk with (rk, rk) and taking A to be of the form A = A. x (), where A.
is the total area of the ocean surface where breaking waves can occur and E) is the
time interval [- 1T, 1-T]. It is assumed that during the time interval of interest the
rate function depends only ,n the breaking-wave occurrence position r and not on
the occurrence time. The number of breaking -saves generated in the surface region
A. during the time interval 0, N., has the probability function of (A.1) with mean

M, : TL A(r)d 2r, (A.5)
A 2
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where the units of A(r) are whitecap occurrences per unit area per unit time. Fur-
thermore, given that there are n breaking waves in A,, the occurrence positions and
times of those breaking waves are described in terms of the joint probability density

p(ri, r1 ,. q = T p(rk, rk), (A.6a)

where

p(r,) = to, otherwise.

The Poisson process for the bubble occurrences is obtained by identifying xJ with
(yk, Vk) and taking A to be of the form A = V x -y, where the bubble source region
V is the total region swept out by the bubble generation region during the lifetime
of the breaking wave and Oy is the time interval during which the point y E V is
contained in the generation region. Thus, A represents the space-time set in which
the bubbles are generated and hence the rate function U(y, v) is non-zero only for
(y, P) E A. The number of bubbles generated in the source region during the lifetime
of the breaking wave, Nb, has the probability function of (A.1) with mean

Mb JJeu(y, )dv)d y, (A.7)

where p(y, v) has the units of bubble occurrences per unit vo!luine per unit time.
Given that there are n bubbles in A, the occurrence positions and times of those
bubbles are described in terms of the joint probability density

n

AnyPVI,... , Vn) 11 p(ylzk), (A.Sa)
k=1

where
{P(Y, V)/Mb, (Y, V) E V X Oy

0, otherwise. (A.8b)

Using (7a), the single-bubble occurrence density can also be written in the form

p(y, V) = M;',(y)ps(v I Y), (A.9a)

where
V I Y) = •(y, v)/p(y) (A.9b)

is the conditional occurrence-time probability density. This probability density de-
scribes the bubble occurrence times at a fixed point within the total volume V.

Finally, from (A.9a) and the assumption that the bubble radius depends only on
the occurrence position of the bubble and not on its occurrence time, the joint
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probability density of the bubble occurrence position, its occurrence time and its
radius can be written aw

p(y, , vi, RI,. .. , yn, v,, R,,) 1= lIP(yk, Vk, 14), (A.10a)

k= 1

where p(y, V, R) W , I Y)P(R Y Y). (A,10b)
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Appendix B

Derivation of the noise cross-spectrum

Let p(t; s) be the total pressure observed on a hydrophone located at position z
due to the noise generated by the aggregate of breaking waves. We assume that the
contributions from the individual breaking waves are statistically-i.idependent, zero-
mean processes with a common probability law that is independent of the position
and the time at which the breaking wave occurs. Under this assumption, p(t; z) can
be written in the form

p(t; Z) - >Zpw(t - Tk; rk, z), (B.1)

where p,,(t - rk; rk, Z) is the pressure contribution from the kth breaking wave to
occur, Tk is the time at which the breaking wave begins, and rk is its position on the
ocean surface. The noise cross-spectrum between the pressures observed at positions
zI and Z2 is defined as the fourier transform

ClW;ZZ j R(t,t + u;aj,z2 )e -i - du, (B.2a)

where
R(t,t + u;zjz2) =- Etp(t;zt)p(t + u;z 2 )] (B.2b)

is the space-time correlation function between the pressures at positions zt and z2
and E1.] is the expected value operator over all stochastic variables determining the
received pressure. Note that the noise cross-spectrum is well defined only when the
space-time correlation function does not depend on the time t.

In this appendix we show that if the breaking-wave occurrence positions and oc-
curence times {(rk, -rk)} are described by the Poisson process specified in Eqs, (A.5)
and (A.6) then the noise cross-spectrum is given by

C(w; 21, z 2 ) J IA. (r)C,(w; r, st, Z2) d2 r, (B.3a)

where
Cw,(w;r,xz,,*2)-= E,,[P;(w;r, z,)P,,(w;r,z2)] (B.3b)

is the breaking-wave cross-spectrum, Ew['] is the expected value operator for fixed
breaking-wave occurrence positions and occurrence times, and

Pw; r,Izj) -= pw(t;r, zj)e- iWt dt (B.3c)

is the pressure spectrum resulting from an individual breaking wave. The noise
intensity spectrum is obtained by setting z, z2 = z in Eqs. (B.3).
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To establish Eqs. (B.3) it suffices to show that

R(t,t + u;st, z) = fA (r)Rw(u;r, 5t,u 2)d~r, (B.4a)

where
R.(u; r, z, sz) = f700 E.[p.(t; r, st)pw(t + u; r, sz)] dt. (B.4b)

Given this result, (B.4a) can be used in (B.2a) to write the noise cross-spectrum in
the form of (B.3a) where

Cw(w; r, st, 22) = / R.(u; r, sI, s2)e-- wudu. (B.5)

Eqs. (B.3b) and (B.3c) follow from using (B.4b) in (B.5).

To derive Eqs. (B.4), we first obtain an expression for the joint characteristic function
of the random variables p(t; sl) and p(t + u; s2 )

4['(1,V2) = E[ei(VIp(t;M0+VP(t+U;N2)) (B.6)

and then use the moment theorem

E[p(t; zt)p(t + u; 82)] = -026(0, O)/0V O 2  (B.7)

to determine the expected value in (B.2b). For notational convenience, we write
p(t; si) and p(t + u; 2a) in the fornA

p(t;z1 ) = E pk,I (rk, rk), (B.8a)
k

P(t + U; 22 ) = E Pk.2(rk, rA.), (B.8b)
k

where

pAt (r., "km) = p.(t - rk; rh, sI), (B.9a)

pk,2(rk, rk) = pw(t + u - rk; rk, s,). (B.9b)

The characteristic function is obtained by expanding the expected value in (B.6) in
terms of expected values conditioned on the event that there are exactly n breaking
waves in the region A = A. x e. The result is

*•(V, = S EE[e("1 t;S0)+2P(t+u;5)) IN, = n)Pr[Nw = n), (B.10a)
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where

EEw.eU1)'t~uL)+u+I"t~u~2)) Nw (B.10b)

Pr[Nw = n] is given by (A.1) with M given by IA.5), and E,...,,,,.[.] is the

expected value operator over the breaking-wave occurrence positions and occurrence

times. Using Eqs. (B.8), the expected value in the nth term in the sum can be written

as

,1...... , [Ew[e1(vl1t;' +v3P(e+u;"2))]]

=.Er.,, ..... r lrs Ew.II E(VPh'.1+U3Ph'2)]

h=1
nN

H r EIlk,1. [Ew(e'('1Ph.'+tV2P&2)]
h=1

where we have used the fact that the points {(rk, rk)} are statistically independent

and identically distributed to replace the expectation of the product by the product
of the expectations in the third equation and to replace the product by the power

in the last equation. Next. we write the outer expected value in the last equation as

an integral using (A.6b) for the probability density. The result is

Er,,r [JEw [e'(v' Ps,' +'v2P, )] =

fT/2iT/2 IAS Mw?1 A(r)Ew[ei(ulPh,1+u2Pb.2 )] d2r dr. (B.12)

Using (B.12) in the last equation of (B.11) and then using the result in Eqs. (B.10)

and substituting for PrINw = n) using (A.1) yields

4(VI,,V3) = e - M.n Ta-/2 .M;'•A(r)Ew[ Ci(vIPhI+V3PA.'2)]d2r dr

x Mw/nI. (B.13)

The desired expression for the characteristic function foliows by writing the sum-
mation as ap exponential function and using *A.5) to express Mw in terms of A(r).

The result is

4(vIv 2 ) = exp (A I(r) (E.(ciu1Ph.+V3Pi.2)1 - ) drd . (B.14)
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Eqs. (B.4) are obtained by first using (E.14) to substitute fo: the characteristic
function in (B.7), differentiating, setting v, = v2 = 0 and using Eqs. (B.9) to
substitute for Pk,i and Pk,2. The resldt is

E[p(i; zi)p(t + u;-8)] =

f A(r)E.[p.(t - r; r,u)p,(t + u - r;r,ag)]d'rdr. (B.15)
JT/2J .4

Interchanging the order of integration, making the change of variable r' = t - r, and
taking the limit as T approaches infinity results in Eqs. (B.4).
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Appendix C

Derivation of the breaking-wave cross-spectrum

In the previous appendix we derived the expression for the noise cross-spectrum in
terms of the breaking-wave cross-spectrum. In this appendix we derive the expression
for the breaking-wave cross-spectrum of (B.3b) unde. the assumptions of Sect. 2. For
generality we allow the pressure transfer spectrum H (w; y, R) as well as the pressure
excitation spectrum F(w; y, R) to be stochastic and define the single-bubble cross-
spectrum Cb(w; y, y', R, R') and the single-bubble spectrum Sb(w; y, R) by

Cb(w; y, Y', R, R') = EbiPN(W; y, R)Pb(w; y', R')], (C.la)

and
Sb(w; y, R) = Eb[Pb(W; y, R)I2 , (C.1b)

where Eb,.] is the expected value operator for fixed bubble occurrence positions,
occurrence times and radii. Note that when the pressure transfer spectrum is deter-
ministic, Cb(w; y,y', R, R') and St.(w; y, R) are determined by the excitation cross-
spectrum and the excitation energy spectrum of (6a) and (6b).

We show that under the assumptions of Sect. 2, the breaking-wave cross-spectrum
is given by

C.(w;r,zi,zz) =-Iv y " r.b.(w;y)G*(ur + y,zl)G(w,r + y, z2 ) d'y

+ If Iv (y))(y')Cb.(w; y, y')G ((w, r + y, zt)C(w, r + Y', Z2)

x ,,(w I y),l(w I y')d 3 y d3 y', (C.2a)

where

Srb.(w;;y) = f Sb(w; y, R)p(R I y) dR (C.2b)

is the radius-averaged bubble spectrum,/00/
Cr.b.(W; y,Y') = 1 j C b(w;y,y', R, R')p(R I y)p(R !' y') dRdR' (C.2c)

is the radius-averaged bubble cross-spectrum, and

f I Y) I/Y j,(v Iy)e'wv dv (C.2d)

is the characteristic function of the bubble occurrence-time probability density ps(v I
y).
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The cross-spectrumn of (C.2a) is derived by expanding the expected value operator

in (B.3b) as a sum of conditional expectations and then evaluating each term in the
sum. The expansion has the form

CW(w;r,91,z2) ZE,,[P;,(w;r,z1)PW.(w;;r,Z2) I N l njPr[Nb = n], (C.3a,

where

E.[P;(w;r,z,)P(o(w;r,z2 )1 Nb = n=

EYt ,•,x,RI- Y,-,n,•,R. [Eb[P;,(w~r, zj)P,(w ;r, %2)]], (C .3b) -

Pr[Nb = nj is given by (A.1) with M given by (A.7), and E1 ta.,R 1 .... y,,IdnRn [.1 is
the expected value operator over the bubble occurrence positions, occurrence times

and radii. To simplify the notation, we rewrite the expression for the spectrum of

the received pressure (5) in the form

Nb
Pw (w; r, zj) -- EP •(yk, Rk)Gj(yk)ei&", (C.4)

k=1

where P6(y, R) and Gj(y) are the bubble pressure spectrum and the function G(w,
r+y, zj) for fixed values of the frequency, the breaking-wave occurrence position and V
the hydrophone positions. Using (C.4) we write the inner expected value in (C.3b)
in the form

EbIjP(u,;r,zj)'Pw(w;r,z 2 )j -

E Eb[(Pb(YkiRk)GI(Yk)C') .Pb(Yk',Rkl)G2(Yk' )ei""J. (C.5)
k,kt=l

Rewriting the double summation in (C.5) as a sum over the diagonal terms and
a sum over the off-diagonal terms and using the definitions of the single-bubble
cross-spectrum and the single-bubble spectrum in Eqs. (C.la) and (C.ib) results in

.Eb[P,(w; r,zl)P,.(w;r,z 2 )] = Sb(w;Yk, Rk)GI(yk)GZ(yk)
k= I

+ Z Cb(W;y, Yka, , R Rk.)G•(yk)G2(yk,)

X e 8" WL (C.6)
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Using (C.6) in (C.3b) and interchanging the expected value with the summation
yields

E.[P,*,(w&;r,zi)P.(w;r,Z 2) I Nb = ?I

->j Eyi,vi,,Ri,..,tyny,,,Rr f5b(w;yk, Rk)Gt*(Yk)G2(Yh)I
k:=1

n

+ E Eyl, ,R1 .. ,,. ,,R.Cb(W;YYkk, y,,~RkI)G,*(Yk)G2(Ykv )etiwLIkCtW~~&h

k1~

n

+, E Eyh vk ,Rk ,yJ,6,A'Ik,Rg [Cb(w; Yk Yk' Rk, Rh' )G*(yD.)G2(Yku)

x e-iwvkkade'AJ, (C.7)

Using the joint probability density for (Yk, V'k, Rh) of (A. 10b), the first expected
value in (C.7) can be written as

- f J A1''(YkjJA(uj I Yk)P(-Ri I Yk)Sb (WL;yk, Rk)G;(Yk)G2(Yk) d 3Yk dvkdRk

W AI 1 JV P(Y)S,.b,(W; Y)Gl*(Y)G 2(Y) d'y, (C.8a)

where Srb,(w; Y) is the radius-averaged bubble spectrum of (C.2b). Similarly, the
second expected value in (C.7) can be written as

Eyh ,,v ,Rk, yh'l LikI, RkfICb(W; Yk, Yk', Rk, Rk.)Gl*(Yk)G2(yw )e-w""h e'""""

fJ Mb ,L(Yk)$U(Vk I Yk)p(Ri. I Yk)P(Yk')I'( Vks I Ykl)p(R.,' I YkI')

X Cb(w; Yk, yA', Rk, Rke)G,*(yk)G2(Yke)

X ' tIhdyk dvA, dRk d Yks duko dRka

w1
2 fV VUYI('C..W ,Y)l()2Y

x 4'(w I y)4'(w I y') d 3 yd 3 y', (C.8b)

where Cr-,b,(W; Y,Y') is the radius-averaged bubble cross- spectrurn of (C.2c) and
$(w I y) is the characteristic function of (C.2d). Using (C.8a) and (C.8b) in (0.7)
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and evaluating the summation yields

EwLP,(w;r,z,)P.(w;r,z 2 ) I Nb = nj

nM;-1  "(y)Sr.b.(w; y)Gj(y)G 2(y) d3Y

+ n(n - 1)Mý-2 JV fV u(y)p(y')C,.b.(w; y,y')G,(y)G2(y')

x I(w I y)iP(w I y')dd3 yd 3y'. (C,9)

Finally, using (C.9) in (C.3a) and the facts that

00

Mb = E nPr[Nb = n] (C.10a)

and for a Poisson random variable
cc

Mb(M.b + 1)- V 'nPr[Nb = (C.10b)
n=1

yields (C.2a).
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Appendix D

The high-frequency approximation

The breaking-wave energy spectrum is obtained from (C.2a) by setting z, = z 2 = z.
The result can be written in the form

S,(w; r, z) = S,, I(w; r, z) +- S. 2(w; r, z), (D.1a)

where

Swi(w; r,z) J ;4(y)Sr.b.(W; y)IG(w r + y, z)I2 d'y, (D.1b)

Swz(w; r,z) = JV f/VU(y)P(y')Cr.b.(w; y, y')G'(w, r + y, z)G(w, r + y', z)

x -'(w I y)f(w I y')dayday'. (D.lc)

In this appendix we derive a frequency- dependent upper bound on the ratio of the
second term in (D.la) to the first and use that bound to identify the frequencies
where the contributions of the second term can be neglected.

The upper bound depends only on the mean number of bubbles generated in the
breaking wave and the probability density of the bubble occurrence times. Ar such it
is completely determined by the bubble generation rate function p(y, v). ThE formal
statement of the upper bound is as follows. Let p(w) be defined by

p(w) = MbI'k(W I Yo)1 2 , (D.2a)

where 1,(w I y) is the characteristic function of the probability density U(v I y) and
yo(w) is determined by

I (w I yo(w)) I = max14(w I y)I'. (D.2b)

Then the spectra Sw, (w; r, z) and Sw2(w; r, z) satisfy

I Sw 2 (,; r, z)I :_ý p(w) SwI(w; r, z). (D.2¢)

To apply the upper bound, we consider the special case where the bubble generation
region has fixed dimensions and moves with constant speed. We further assume that
the bubbles in this region are generated at a constant rate. For this case, 11(y, v) is
constant for each v E E), and Egy is independent of y E V. It follows from (A.9b)
that iL(v I y) is a uniform probability density for each v, E 0.. Thus by using the
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expression for the characteristic function of a uniform random variable in (D.2a) we
obtain

P()= bsin(ýwT) 2• < M4 (D.3)

where T is the duration of the interval 0.. For Mb - 104 bubbles and T = 0.1 b,

p < 0.1 for frequencies f > 1 kHz. Thus, for the high frequencies of interest, the
energy spectrum is well approxiinat,.d by the first term of (D.la).

The derivation of the upper bound makes use of the following prof, 2rty of expected
value operators. Let X and Y be two complex random variables. 'J,-n

iE[XYjj < E[IXYI] ! (EIIXI2I) 1I/(E[HYI]')'/• (D.4a)

and
EtIX 1/2] K_ (E[LXI})1 /2  (D.4b)

The inequality (D.4a) is simply an erpplitation of Cauchy's inequality where the
inner product is the expectation operator. The inequality (D.4b) is obtained from
(D.4a) by setting Y = 1 and using iXi'I' in place of IXI.

To derive the upper bound, we first show that the magnitude of the radius-averaged
cross-spectrum s~tisfies

I (:".b. (W; Y, Y') I :-< (S,..b. (W; Y)Sr. b. (W; Y'))l/ (D.6)

To this end we rewrite (C.2c) in the form

(",.b.(W; Y, y') = j j (Sb(w; y, R)Sb(w; y', R'))117 CebtW; y y, ,R, R')

x p(R I y)p(R' I y') d R dR', (D.5a)

where

Cb(w;y,y', R,R') Cb(W; y,y', R, R')(D.6b)
(Sb(w; y, R)Sb(W; y', R'))/ 2 (

is the normalized single-bubble cross-spectrum. By applying (D.4a) to Cb(w; y,y',
R, R') = Eb[P•{,,; y, R)P,(w; y', R')], and then using the result in (D.6b), we obtain

Ib b(O;y,y ,R, R')I< 1. (D.7)
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Taking the magnitude of both sides of (D,6al) and using (D.7) results in

IC,.b.(w; y,Y) y 0j (Sb (w;y, R))' 1 2 p(R I y) d',

x (Sb(w; y', R)) /2 p(R ly') dR. (D.8)

Applying (D.4b) to both integrals on the rhs of (D.8) with IXI equal 'o Sb(w;y, R)
and Sb(w; y', R) respectively we obtain

1(00 1/2

IC,.b.(w;y,y')I S (jo Sb(w;y,R)p(R I y)dR)

x ( 0Sb (w; y', R)p(R I y') dR 12(D.9)

The inequality (D.5) follows immediately from (D.9) and the definition of the radius-

averaged bubble spectrum (C.2b).

We now complete the derivation. By taking the magnitude of both sides of (D.lc)
and using (D.5) we obtain

S.2(w; r, z) <_ JV flI(Y)1(Y') (S.b'(w; y)Sb(W&'; y'))'112 G*(w, r + y, z)

x G(w,r + y',z)l*(w I y)l(w I y')I d3yd 3 y'. (D.10)

The double integral on the rhs of (D .10) separates into a product of two integrals.
Using this we rewrite (D.10) in the forin

2

52(w;r, z) S ( VL(y) (Sr.b.(w; y))l/ 2' G(w, r + y, z)II'1(w I y) d3y). (D.11)

By rearranging the integrand in (D.11) and using the fact that M,-'p(y) is a prob-
ability density we can write

S.2(w;rz) <_ M• (EI(IS,.b.(w;y)IIG(wr + y,z)i2I'(, I y)I•)'/2] , (D.12)

where E[.] is the expectation with respect to the probability density MW-t*(y).
Applying the inequality (D.4b) to (D.12) results in

S,,(w; r,z) S M'E[IS,.b.(w;y)IIG(w,r+ y,z)j2It(w I y)l]. (D.13)

Using (D.2b) to bound the rhs of (D.13) we obtain
S.I(w;r~z) 5 M b2E{jSr.b.(Wqy)jj6G(w,r + y,z)121]1(W i y0(W)) 12. (D.14)

Finally, by expressing the integral on the rhs of (D.Ib) in terms of the expected

value operator E[.], we obtain

8w!(w;r, z) = AfbE[ISr.b.(w; y)IIG(w,r + y, z)1 2]. (D.15)

The upper bound follows immediately by using (D.15) in (D.14).
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Appendix E

The model equations for the examples of Sect. 5

The breaking-wave energy spectrum and the noise intensity spectrum describe the
noise observed on a single hydrophone located at the position z. In the simplified
model for the ideal medium (homogeneous, semi-infinite), the breaking-wave energy
spectrum is given by

S.(w; r, z) = MbS,..b.(W)R(w, O)T(w, Iz - ri), (E.la)

and the noise intensity spectrum is given by

S(w; z) = AMbSn.,b.(w)C:(w; ,0,'). (E.lb)

The transmission loss T(w, 1z - ri) is determined by (14c) and the integrated spec-
trum C!(w; z, 0,7) is determined by (15b) with the hydrophone separation ? set
equal to zero. The mean bubble spectrum Sm.b.(W) and the radiation pattern R(w, 0)
depend on the mechanism by which the bubble vibrations are excited. In this ap-
pendix we derive the equations that determine the mean bubble spectrum and the
radiation pattern for the excitation postulates of Sect. 4 and the assumption that
the pressure transfer spectrum H(w; y, R), the bubble generation rate p(y) and the
bubble-radius density p(R I y) are independent of y throughout the source region.

For the pressure-jump excitation the radius-averaged bubble spectrum S,.b.(w; y)
is obtained from (8c) with the single-bubble spectrum Sb(W; y, R) obtained from
(8d) using the excitation energy spectrum of (18b). Making these substitutions and
noting that Sp(w; y, R) is independent of R results in

S,. b. (W; Y) = E[[H(w; R) I'] (pg d(y)/(v) 2, (E.2)

where E[.] is the expectation with respect to p(R). The mean babble spectrum is
obtained by using (E.2) in (8b). The result is

Sb(W)= fv E[fH(w; R)j21 (pyd(y)/w) 2 Mý,ji(y) d3y

= EIH(w; R)12](pg !w)2 f (d(y)) 2 Mý t *(y) d y

or equivalently
Smb.(W) = Sr.b.(w; D'), (E.3a)

where Sr b.(w; D') is the radius-averaged bubble spectrum evaluated at d(y) = D',
and (ELb

D' = (f(d(y)) •Mý-1 (y) d y) / (E.3b)
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is the rms source depth.

The normalized radius-averaged spectrum S0.bd(w; y) is obtained by using (E.2) in
(8f). The result is

Sr~b.(w; y) = M,' i(y)E[IH(,; R)1'1 (pgd(y)/w) 2 /Sm.b.(W)

or, alternatively, using Eqs. (E.3)

Sr.b.('&);y) = M'-'p(y) (d(y)) 2 /(D' )2 . (E.4)

In the simplified model the source region has a horizontal cross-section A' that is
independent of depth so that

and for the special case where 14(y) is constant

M(y)-- Mb/(A'D). (E.5b)

It follows from (E.3b) and Eqs. (E.5) that D' is given by

(\1/ 2

D'= D-1 (Ya,)2 dy" : 0.58D, (E.6)

and from (12c), (E.4) and Eqs. (E.5) that S,.b.(W; Y") is

r.b.(w; y") = D-l(y")2 /(D') 2 . (E.7)

The radiation pattern is obtained by using (E.7) in (14b). The re%uit is
-I'

(wo) = D-'(D')--fa (Y")2 (2 sin((w/c) cus(O)y")) 2 dyl". (E.8)

For the volume-rate excitation the radius-averaged bubble spectrum is obtained from
(8c), (8d) and (19b). The result is

S,.b,(w;y) = E[IH(w; R)j2 R2 J(pU')2 . (E.9)

Since the rhs of (E.9) is independent of y, the mean bubble spectrum is also given
by (E.9) and the normalized radius-averaged spectrum is simply

S,.b.(w;y) = Mb-' 4y). (E.10)

For the simplified model with u(y) constant throughout the source region, it follows
from (12c), (E.10) and Eqs. (E.5) that Sr.b.(w; y") is

Sr.b.(w;9) D- 1 , (E.11)

and from (14b) and (E.11) that the radiation pattern is

1 D
R(w, 9) - D- (2 sin ((w/c) cos(l9)"))2 dy". (E.12)
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